Skip to Content
Authors Beenken-Rothkopf LN, Karfeld-Sulzer LS, Zhang X, Kissler H, Michie SA, Kaufman DB, Fontaine MJ, Barron AE
Author Profile(s)
Journal J Biomater Appl Volume: 28 Issue: 3 Pages: 395-406
Publish Date 2013 Sep
PubMed ID 22832218

Protein polymer-based hydrogels have shown potential for tissue engineering applications, but require biocompatibility testing for in vivo use. Enzymatically crosslinked protein polymer-based hydrogels were tested in vitro and in vivo to evaluate their biocompatibility. Endotoxins present in the hydrogel were removed by Trition X-114 phase separation. The reduction of endotoxins decreased TNF-α production by a macrophage cell line in vitro; however, significant inflammatory response was still present compared to collagen control gels. A branched PEG molecule and dexamethasone were added to the hydrogel to reduce the response. In vitro testing showed a decrease in the TNF-α levels with the addition of dexamethasone. In vivo implantations into the epididymal fat pad of C57/BL6 mice, however, indicated a decreased inflammatory mediated immune response with a hydrogel treated with both PEGylation and endotoxin reduction. This study demonstrates the importance of endotoxin testing and removal in determining the biocompatibility of biomaterials. Copyright © 2017 The Board of Regents of the University of Wisconsin System