Skip to Content
Authors Chen T, Vamos AC, Dailey SH, Jiang JJ
Author Profile(s)
Journal Laryngoscope Volume: 126 Issue: 10 Pages: 2295-300
Publish Date 2016 Oct
PubMed ID 27232675

To observe the learning curve of the head-mounted microscope in a phonomicrosurgery simulator using cumulative summation (CUSUM) analysis, which incorporates a magnetic phonomicrosurgery instrument tracking system (MPTS).Retrospective case series.Eight subjects (6 medical students and 2 surgeons inexperienced in phonomicrosurgery) operated on phonomicrosurgical simulation cutting tasks while using the head-mounted microscope for 400 minutes total. Two 20-minute sessions occurred each day for 10 total days, with operation quality (Qs ) and completion time (T) being recorded after each session. Cumulative summation analysis of Qs and T was performed by using subjects’ performance data from trials completed using a traditional standing microscope as success criteria.The motion parameters from the head-mounted microscope were significantly better than the standing microscope (P < 0.01), but T was longer than that from the standing microscope (P < 0.01). No subject successfully adapted to the head-mounted microscope, as assessed by CUSUM analysis.Cumulative summation analysis can objectively monitor the learning process associated with a phonomicrosurgical simulator system, ultimately providing a tool to assess learning status. Also, motion parameters determined by our MPTS showed that, although the head-mounted microscope provides better motion control, worse Qs and longer T resulted. This decrease in Qs is likely a result of the relatively unstable visual environment that it provides. Overall, the inexperienced surgeons participating in this study failed to adapt to the head-mounted microscope in our simulated phonomicrosurgery environment.4 Laryngoscope, 126:2295-2300, 2016. Copyright © 2016 The Board of Regents of the University of Wisconsin System