Skip to Content
Authors Bhatti P, Van Beek-King J, Sharpe A, Crawford J, Tridandapani S, McKinnon B, Blake D
Author Profile(s)
Journal Biomed Res Int Volume: 2015 Pages: 109702
Publish Date 2015
PubMed ID 26236714
PMC ID 4509491

We present an effective method for tailoring the flexibility of a commercial thin-film polymer electrode array for intracochlear electrical stimulation. Using a pneumatically driven dispensing system, an average 232 ± 64 μm (mean ± SD) thickness layer of silicone adhesive coating was applied to stiffen the underside of polyimide multisite arrays. Additional silicone was applied to the tip to protect neural tissue during insertion and along the array to improve surgical handling. Each array supported 20 platinum sites (180 μm dia., 250 μm pitch), spanning nearly 28 mm in length and 400 μm in width. We report an average intracochlear stimulating current threshold of 170 ± 93 μA to evoke an auditory brainstem response in 7 acutely deafened felines. A total of 10 arrays were each inserted through a round window approach into the cochlea’s basal turn of eight felines with one delamination occurring upon insertion (preliminary results of the in vivo data presented at the 48th Annual Meeting American Neurotology Society, Orlando, FL, April 2013, and reported in Van Beek-King 2014). Using microcomputed tomography imaging (50 μm resolution), distances ranging from 100 to 565 μm from the cochlea’s central modiolus were measured. Our method combines the utility of readily available commercial devices with a straightforward postprocessing step on the order of 24 hours.

Full Text Full text available on PubMed Central Copyright © 2016 The Board of Regents of the University of Wisconsin System