

Page 1 of 8

Islet Viability Assessment by Single Cell Flow Cytometry

<u>Purpose</u>: To comprehensively assess the viability of the islet cell preparation prior to transplantation.

Tissue Samples:

- A sample containing ~ 5-10,000 IEQ from the islet preparation intended for transplant.
- A sample of INS-1 cells (any cell line can serve this function) as a "viable cell" control.

General Materials:

Dithizone, counting dishes, inverted microscope 12 x 75 mm BD Falcon tubes 50 ml conical centrifuge tubes BD 50 ml conical tube 40 μ m cell strainer filters (Ref.# 352340) 37°C 5% CO₂ incubator p1000 pipettor with standard precision tips p20 pipettor with standard precision tips

Reagents:

Trypsin (0.05%) EDTA (0.53 mM) for islet/acinar dispersion (Cellgro Product # 25-052-CI) Culture media (CMRL 1066 with HSA or FBS) used for Trypsin inactivation)

Recommended buffer for islet cell staining:

1 x Modified Kreb's Ringer Bicarbonate (Base Solution) with 3.3 mM glucose

Chemical	F.W.	[mM]	g/L
NaCl	58.44	137	8.0
KCI	74.55	4.7	0.44
KH ₂ PO ₄	136.1	1.2	0.16
MgSO ₄ -7H ₂ O	246.48	1.2	0.3
CaCl ₂ -2H ₂ O	147	2.5	0.37
NaHCO ₃	84.01	25	2.1
HEPES	1M stock	10	10.0 ml
 pH to 7.4 with HCL of will increase the RO Sterilize by filtration 	or NaOH if necessary, do n S background.	ot charge with 95%	0 ₂ /5% CO ₂ as th

- Sterilize by filtration
- Shelf life is ~ 1 month

1x MKRB (working solution) – PREPARE ON DAY OF USE!

MKRB	Glucose [1.65 M]	BSA (optional)
100 ml	200 μl	.25 g

pre-warm to 37°C for use in islet cell staining and flow analysis

Page 2 of 8

Islet Viability Assessment by Single Cell Flow Cytometry

Fluorescent probes (supplier):

ToPro-3 (viability dye) (Invitrogen) – use at ~20 nM in the final sample just prior to analysis on the FACS Vantage

- Stock is 1 mM in DMSO.
- Dilute 1 μ l of stock in 999 μ l of 1x PBS [1:1000, 1 μ M].
- Use 10 μ l of 1 μ M ToPro3 stock per 0.5 ml of sample just prior to analysis.

Caspace FITC (apoptosis) (Promega)– use at 1 μ M for cell loading prior to analysis

- Stock is 1 mM in DMSO.
- Use 1 μ l per 1.0 ml of cell suspension for a final concentration of 1 μ M.
- Incubate cells for 30 minutes at 37° C in the CO₂ incubator.

Annexin V PE (apoptosis) (Invitrogen) – use 3-4 µl per 1.0 ml islet cell sample.

Dihydroethidine (reactive oxygen species) (Invitrogen) – 5 mM stock, use at 5 μ M for 5-7 min of staining at room temp. No need to wash out. Visualize using a 550 LP with a 575/26 for emission detection. The fluorescent product that is created upon reaction with superoxide anion emits at 567nm. It is critical that DHE staining NOT be performed in oxygenated media.

JC-1 (mitochondrial membrane potential (Invitrogen) – use 10 μ l per 1.0 ml islet cell sample. Visualize using the 530/30 (FL1 Green) and 575/25 or 585/42 (FL2 Orange) PMTs for emission detection. Cells with healthy polarized mitochondria should have a greater JC-1 Red>Green fluorescence ratio. CCCP is a mitochondrial membrane uncoupler which induces rapid depolarization and is a useful control.

CCCP [50 mM] – use 2 μ l per 1.0 ml islet cell sample.

FDA (viability) (Invitrogen) – stock is 5 mg/ml in acetone. Final working concentration for single cell staining is 10 ng/ml. Dilute the stock 1:100 dilution into 1x PBS, then dilute the 1:100 stock 1:10 into 1x PBS to make the working solution, use 2 μ l per 1.0 ml of islet cell sample. Incubate cells at 37°C for 25-30 minutes.

7-AAD (necrosis) – (BD Biosciences) – ready to use solution. Use 10-20 μ l per sample and incubate for 10 – 20 minutes prior to analysis. No washing is necessary. For use on FACScalibur flow cytometers without a 635nm diode laser. Excitation can be achieved with the 488 nm argon laser with detection at 650 nm.

Propidium Iodide – (necrosis) (Invitrogen) [50 μ g/ml] use 10 μ l/ 1 ml sample, add just before analysis (ex 488 nm, em 670 nm)

Page 3 of 8

Islet Viability Assessment by Single Cell Flow Cytometry

Staining Protocol:

- **1.** Trypsinize a sufficient quantity of islets (2000 5000 IEQ) and INS-1 cells (optional) to produce ~ 1.4×10^6 cells.
 - a. <u>Incubation with trypsin should not exceed 5 minutes at 37°C</u>. After the 5 minute incubation, the cells should be pipeted through a p1000 tip and then a p200 tip. INS-1 cells come free from the flask easily after only 3-5 minutes of trypsin exposure.
 - b. 2000 IEQ yields ~ 1.0×10^6 cells.
- 2. Add an equal volume of culture media to quench the trypsin.
- 3. Filter the cell suspensions through a 40 μ m BD filter into a 50 ml tube.
- 4. Remove a 10 μ l sample for counting using a hemocytometer.
- 5. Pellet the cells by centrifugation (5 minutes, 1000 rpm, room temp, with brake).
- **6.** Decant the supernatant, tap the tube to resuspend the cells, add 10 ml of islet staining buffer (MKRB and 3.3 mM glucose, pH 7.4).
- 7. Pellet the cells by centrifugation (5 minutes, 1000 rpm, room temp, with brake).
- **8.** Decant the supernatant, tap the tube to resuspend the cells, add 12 ml of islet staining buffer, aliquot 1ml into each of the fourteen (14) 12 x 75 mm snap cap tubes.
 - a. Target cell concentration per tube is 1.0×10^5 to 1.0×10^6 cells
- Add the appropriate staining reagents (DO NOT ADD THE HYDROXY ETHIDINE).
- **10.** Incubate at 37°C for a minimum of 25 minutes in the dark (a tissue culture incubator works well).
- **11.**Wash all of the tubes with 1.0 ml of staining buffer.
- **12.** Pellet the cells by centrifugation (5 minutes, 1000 rpm, room temp, with brake).
- **13.** Decant the supernatant, tap the tubes to resuspend the cells.
- **14.** Repeat steps 11 13.
- 15. Resuspend the cells in 0.5 ml of islet staining buffer and place in a covered container without ice!
- 16. Proceed to the flow cytometer immediately!
- **17.** Add the Hydroxyethidine within 10 minutes of running the samples on the flow cytometer. No washing is necessary. Be sure to collect the 488 excited light emission using a 575/25 filter not a 615/25.

Page 4 of 8

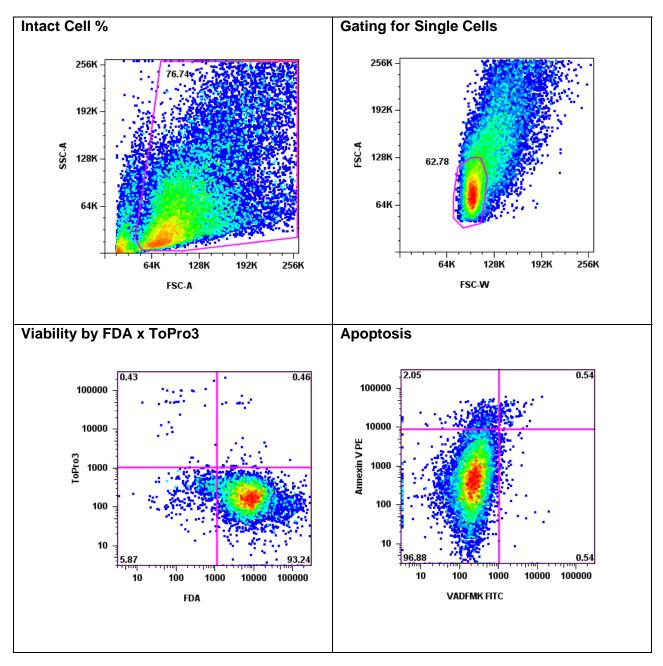
Islet Viability Assessment by Single Cell Flow Cytometry

Sample Staining Guide :

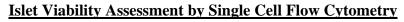
For flow cytometers with 325, 488 and 633 nm excitation lasers

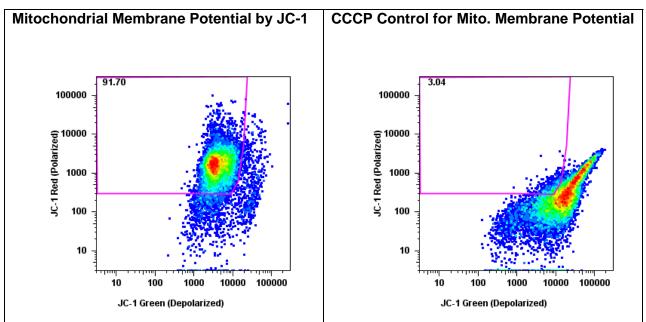
- Tube # 1. Unstained
- Tube # 2. ToPro3 alone control
- Tube # 3. FDA alone control
- Tube # 4. VADFMK FITC alone control
- Tube # 5. Annexin V PE alone control

Tube # 6. FDA + ToPro3


- Tube # 7. FDA + ToPro3
- Tube # 8. FDA + ToPro3
- Tube # 9. VADFMK FITC + Annexin V PE + ToPro3
- Tube # 10. VADFMK FITC + Annexin V PE + ToPro3
- Tube # 11. VADFMK FITC + Annexin V PE + ToPro3
- Tube # 12. JC-1 + ToPro3
- Tube # 13. JC-1 + ToPro3
- Tube # 14. JC-1 + ToPro3
- Tube # 15. JC-1 + CCCP + ToPro3
- Tube # 16. DHE + ToPro3
- Tube # 17. DHE + ToPro3
- Tube # 18. DHE + ToPro3
- Tube # 19. JC-1 alone control (optional)
- Tube # 20. DHE alone control (optional)
- **alternate for ToPro3 is 7-AAD (but do not add to the DHE samples).
- *** be sure to appropriately compensate the 670 signal out of the 575 signal when acquiring and analyzing the DHE data.

Page 5 of 8


Islet Viability Assessment by Single Cell Flow Cytometry


Example Data from a High Quality Human Islet Preparation

Page 6 of 8

Islet Flow Cytometry Data Worksheet

Islet Prep. Code				
Islet Sample Concentration	[IEQ/mL]			
Sample Volume Used for Assay [mL]				
Total IEQ Used for Assay				
Comments on Islet Quality:				
Hemocytometer Count of Tryp	sinized Islet Sample (T	rypan blue is op	tional):	
		T 10		
Live (Trypan blue-)	Dead (Trypan blue+)	Total Count	% Viable (live/total)	
Grid 1:				
Grid 2: Grid 3:				
Grid 4:				
Average:				
Average Total Count:	$ = 10^4 - $		/mI	
Average Total Count.	X 10 =		/1111_/	
Total Cell Count:	_/mL x mL (total	sample volume)	=	
Islet Cells Aliquoted Per Flow S	Sample: Total Cell Cour	nt/16 =		
Number of Islet Cells Obtained per IEQ:				
Total Cell Count/IEQ trypsinized = =				

Islet Flow Cytometry Data Worksheet

DATA ANALYSIS:	Isolation Code:	Date:
	Experimentor:	

- 1. Gate cells first on FSC x SSC to eliminate debris.

- Cate cells for single cells using FSC –A vs FSC-W comparison.
 Determine %viability based upon single cells.
 Use single color controls to establish correct compensation and gating schemes.

		Samples
Objective:	Stain combination:	
	FSC x SSC gated events	
	FSC x SSC gated events	
Intact cells	FSC x SSC gated events	
	Mean ± SD	
	% FDA bright ToPro3-	
	% FDA bright ToPro3-	
Viability	% FDA bright ToPro3-	
	Maara - CD	
	Mean ± SD %VADFMK+ToPro3-/dull	
	%Annexin V+ ToPro3-/dull	
	%VADFMK+ and AnnexinV+	
	ToPro3-/dull	
	%VADFMK+ and AnnexinV+	
Apoptotic% of Viable Cells	ToPro3-/dull	
	%VADFMK+ and AnnexinV+	
	ToPro3-/dull	
	Mean ± SD	
Apoptosis Adjusted	(% Viable - Apoptotics) x	
Viability	(%ToPro3-/dull)	
	(% Viable - Apoptotics) x	
	(%ToPro3-/dull)	
	(% Viable - Apoptotics) x	
	(%ToPro3-/dull)	
	Mean ± SD	
Mitochondrial Membrane	%JC-1 Red>Green ToPro3-/dull	
Potential of Viable Cells	%JC-1 Red>Green ToPro3-/dull	
	%JC-1 Red>Green ToPro3-/dull	
	Mean ± SD	
CCCP treated Control	%JC-1 Red>Green ToPro3-/dull	
Reactive Oxygen Species	%DHE+ ToPro3-/dull	
(superoxide anion	%DHE+ ToPro3-/dull	
accumulation) in Viable	%DHE+ ToPro3-/dull	
Cells	Mean ± SD	
Additional Probes Used:		
		I I