RSS SESSION SIGN-IN SHEET

Pediatric Care Echo Series

How Am I Supposed to Breathe With No Air: Management of Pediatric Drowning

April 19, 2018

Benjamin L. Eithun, MSN, CRNP, RN, CPNP-AC, CCRN, TCRN

RSG Global Objectives: (5): Assess pediatric trauma given the new skills and guidelines determined to be safe for children. Identify proper tools and standardized measurement practices to improve diagnosis and treatment of pediatric patients.

Policy on Disclosure

It is the policy of the University of Wisconsin-Madison Interprofessional Continuing Education Partnership (ICERP) that anyone with a CME planning role for this activity (person who may influence content) discloses all relevant financial relationships with commercial interests* in order to allow CME staff to identify and resolve any potential conflicts of interest. Disclosure of any planned discussions of unlabeled/unapproved uses of drugs or devices during each presentation is required. For this educational activity, all conflicts of interest have been resolved and disclosed disclosures are listed below:

<table>
<thead>
<tr>
<th>Name/Role</th>
<th>Financial Relationship Disclosures</th>
<th>Discussion of Unlabeled/Unapproved uses of drugs/devices in presentation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Eithun, MD, Presenter</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Chay</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Veronica Watson, Coordinator</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Randi Cates, Coordinator</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Danielle Beeman, COED Staff</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Benjamin Eithun, M.S., RN, Coordinator</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
<tr>
<td>Mary Jean Broach, Coordinator</td>
<td>No relevant financial relationships to disclose</td>
<td>No</td>
</tr>
</tbody>
</table>

* The ACCME defines a commercial interest as anything producing, marketing, reselling, or distributing health care goods or services consumed by, or used on patient. The ACCME does not consider providing of clinical service directly to patients to be commercial interest.

My signature below verifies that I have attended this CME activity, and have honestly disclosed (or refused) any real or apparent conflicts of interest that may have a direct bearing on the subject matter of this CME activity. This pertains to relationships with pharmaceutical companies, biomedical device manufacturers, or other corporations whose products or services are related to the subject matter of the presentation topic. This also pertains to relationships with the commercial supporters of this CME activity.

Disclaimer: All photos and/or videos included in the following presentation are permitted by subjects or are not subject to privacy laws due to lack of patient information or identifying factors.
Pediatric Near Drowning: How am I Supposed to Breath with No Air
Introductions

- Ben Eithun, MSN, CRNP, RN, CPNP-AC, CCRN
 Pediatric Trauma Program Manager
 Pediatric Level 1 Trauma Center
 American Family Children’s Hospital
 Beithun@uwhealth.org
 608-212-9866
Disclosures

- I do not have any relationships with commercial interests to disclose.
Objectives

- To describe the assessment and management of pediatric drowning patients
- To describe the reasons to consider transfer to a higher level of care following a submersion injury
Definitions

- Drowning: To die within 24 hours of a submersion incident
- Non-Fatal (formerly known as Near Drowning): To Survive at least 24 following submersion incident
Who is at Risk?

- **Infants**
 - No head control, can drown in less than 1 inch of water
 - Must suspect abuse

- **Toddlers**
 - Top heavy
 - Toilets
 - Bathtubs
 - Buckets
Who is at risk?

- **School Age Kids**
 - Groups
 - Over estimate skills

- **Teenagers**
 - Risk taking behavior
 - Drinking
“But my child knows how to swim”
Hollywood V. Reality

Drowning is a quick and silent killer.

In the time it takes to:

- Get a towel (10 seconds), a child can become submerged.
- Answer the phone (2 minutes), a child can lose consciousness.
- Answer the front door (4-6 minutes), a submerged child can sustain permanent brain damage or die.
Marketing Department
Reality
Comorbidities

- Trauma
- Seizures
- Cardiac Events
- ETOH/Drugs
Pathophysiology

- Aspiration of 1-3 ml/kg fluid destroys integrity of pulmonary surfactant (decreases lung compliance)
Pathophysiology

- Leads to alveolar collapse, atelectasis, non-cardiogenic pulmonary edema (ARDS), Intrapulmonary shunting/V/Q mismatch
Unexpected Submersion → Aspiration & Laryngospasm → Swallows water → Laryngospasm aborted → aspiration of water (90%) → Laryngospasm recurs → anoxia, seizures and death without aspiration (10%) → Stage III

Stage I (0-2 minutes) → Stage II (1-2 minutes)
Pathophysiology

- **Part I**
 - Voluntary breath-holding
 - Aspiration of small amounts into larynx
 - Involuntary laryngospasm
 - Swallow large amounts
 - Laryngospasm abates (due to hypoxia)
 - Aspiration into lungs
Pathophysiology

- **Part II**
 - Decrease in sats
 - Decrease in cardiac output
 - Intense peripheral vasoconstriction
 - Hypothermia
 - Bradycardia
 - Circulatory arrest, while VF rare
 - Extravascular fluid shifts, diuresis
Pathophysiology

- **Diving reflex**
 - Bradycardia, apnea, vasoconstriction
 - Relatively quite weak in humans
 - better in kids
 - Occurs when the face is submerged in very cold water (<20°C)
 - Extent of neurologic protection in humans due to diving reflex is likely very minimal
Diving Reflex
Wisconsin Swimming
Immersion Syndrome

- Syncope secondary to cardiac arrhythmias when immersed in cold water
- QT prolongation combined with massive release of catecholamines coupled with vagal stimulation leads to VF/Asystole
Fatal Consequences

- Profound hypoxia
- Respiratory Acidosis
- Cardiovascular collapse
- Neuronal injury
- Death
Prognosis

- Better outcomes associated with early CPR (bystander)
- C-spine protection:

Transport
- Continue effective CPR
- Establish airway
- Remove wet clothes
- Hospital evaluation
“Wet” Vs “Dry” Drowning

- Patient is submersed for critical time (usually 3-5 min but vary greatly)
- Involuntary gasping syndrome (water into the hypopharynx)
- Laryngospasm
 - If severe, airway obstruction “Dry”
 - If mild, aspiration of water into lungs “Wet”
Does it matter what kind of water?

- Fresh water Vs. Salt Water
 - Historically felt to affect electrolytes, fluid shifting if hypertonic
 - Most of the time, the amount aspirated is not sufficient to be clinically significant
 - Theoretically hyperosmolar therapy could have higher instance of laryngospasm \(\rightarrow\) dry drowning
Early Vs. Late Effects

- Many patients will have fatal drownings and will not regain consciousness
- Those who do are still at risk and need to be monitored
Complicating Factors

- Spinal Cord Injury
- Hypothermia
- Panicking
- Syncope
- Seizures
Prehospital Care

- **Resuscitation**
 - Time optimizes outcome

- **Removal from water**
 - C-Spine protection

- **CPR**
Prognosis

- **No CPR**
 - Full recovery usually possible
 - May develop ARDS

- **Bystander CPR**
 - Steady recovery
 - Steady decline

- **ED CPR**
 - Very poor prognosis
Prognosis predictors

- **Poor outcomes**
 - Age < 3 yrs
 - Submersion time: >10 min
 - Time to BLS >10 min
 - Serum pH: <7.0
 - CPR >25 min
 - Initial core temp <33°C
 - GCS <5
Late Effects

- Cerebral Edema
 - Initial Hypoxemia
 - Post resuscitative cerebral hypoperfusion
 - Increase ICP
 - Cytoxic cerebral edema
Late Effects of Submersion Injury

- 70% of cases develop within 7-8 hours
- Alertness → Agitation → Coma
- Cyanosis, Coughing & Pink Frothy Sputum
- Tachypnea, Tachycardia
- Low Grade Fever
- Rales, Rhonchi and less often wheezes
ED Treatment

- Observation (Vital signs, mental status)
- Evaluate Oxygen requirement (especially after 6 hours)
- Parent/Family support
Treatment: ED discharge

- ED eval
- Admit if: CNS or respiratory symptoms
- Observe for 4-6 hours if
 - Submersion >1min
 - Cyanosis on extraction
 - CPR required
Predicting Ability for ED Discharge

- Several studies support selected ED discharge

- Child can safely be discharged home if at 6 hours after ED presentation:
 - GCS > 13
 - Normal physical exam/respiratory effort
 - Room air pulse oximetry oxygen saturation > 95%

Case Study 1

- 4 year old male found at bottom of pool by bystander
 - Removed from pool and was cyanotic and unresponsive
 - Bystander back blows with improvement of cyanosis
Case Study 1 EMS

- EMS arrived 6 min after 911 call
- Patient was breathing and had a pulse on EMS arrival but decreased mental status
- EMS Vitals: HR 154, RR 34 BP 127/68 Sats 98% on 15 L NRB
Case Study 1 First Hospital

- Arrived to Hospital 9 min after 911 call
- Initial Vitals: HR 101, BP 108/75, RR 44 Sats 98% 2L NC GCS 15
- Exam: Normal
Case Study 1 ED Cont

- Patient evaluation including:
 - Blood work
 - VBG and Chemistry: pH 7.38, Na 130
 - Head CT: Unremarkable
 - C Spine CT: Unremarkable
 - Chest Xray: Unremarkable
Treatment: ED discharge

- ED eval
- Admit if: CNS or respiratory symptoms
- Observe for 4-6 hours if
 - Submersion >1min
 - Cyanosis on extraction
 - CPR required
Case Study 1 ED Cont

- Patient with desaturations later in course
- Repeat Chest X-ray: (4 hours later) bilateral airspace opacities
- Albuterol: increased coughing and desaturations.
- Started on Abx
Case Study 1 PICU

- Patient Transferred to PICU
 - Concern for developing ARDS
 - Concern for cerebral Edema

- Patient on 15 L NC on admission, weaned over 24 hours

- Lasix
Case Study 2

- 22 month old male at park with family and slipped and fell into creek.
- Patient taken by current approximately 30 yards down stream, parent able to reach patient approximately 30 sec after patient went in water.
Case Study 2 Cont

- Parent describes patient as trying to keep head above water at first but “limp and unresponsive upon recovery”
- Parent shook patient, patient gasped and spit up water.
- Regained normal mental status within 60 secs of being removed from water
Case Study 2 ED

- Parent brought patient to ED immediately following event
- Vitals: GCS 15, HR 113, RR 40, Sats 99% RA, BP 93/57
- Temp: 100.9F
Case Study 2 Hospital Course

- Patient admitted for observation
- Discharged after approximately 24 hours
- No residual effects
Case Study 3

- 4 year old Female on vacation at waterpark. Family was out of water, turned around and couldn’t find patient.
- Lifeguard found patient in pool, unresponsive.
Case Study 3 EMS

- Patient had pulse when removed but required rescue 3 rescue breaths
- Emesis followed by spontaneous breathing
- Transferred to nearest ER
Case Study 3 Hospital

- On arrival (approximately 20 min after event) patient with decreased mental status (GCS 10)
- Patient became combative and was intubated for airway protection
Case Study 3 ED Cont

- Intubated approximately 10 min after arrival (30 min from event)
- Vitals prior to intubation:
 - HR 128, RR 40, BP 157/105, T 96.5°F
 - Sats 100 15 L NRB
- Head CT: Unremarkable
- Chest Xray: Large infiltrate on left
Case Study 3 PICU

- Patient transferred to PICU (ground, helicopter not flying)
- On arrival to PICU patient with Fever (40 C)
 - Placed on cooling blanket
Case Study 3 PICU

- Antibiotics for aspiration pneumonia
- Extubated to HFNC after 72 hours, escalated to CPAP but ultimately weaned to RA
Case Study 3 Prognosis

- Discharged home after 8 days
- No end organ dysfunction
- No neurological sequela
Case Study 4

- 6 year old female at waterpark. Swimming in 4-5 feet deep pool with several cousins and siblings.
- Found by lifeguard floating on top of the water for unknown period of time.
Case Study 4 EMS

- Patient pulseless and apneic
- CPR 6-8 minutes after which patient had ROSC and spontaneously breathing.
- Upon EMS arrival patient was awake and alert crying for mother
Case Study 4 ED

- Upon arrival to the ED patient was awake and alert, but agitated.
- HR 120s, RR 30s, BP WNL, Sats 88 RA (placed on blow by)
Case Study 4 ED

- Chest X-ray: unremarkable
- Labs: pH 7.4 Lactate 4.3
- Physical Exam: Complains of abdominal pain (crying during exam so abdomen firm)
Case Study 4 Hospital

- Transferred to PICU for monitoring of respiratory status and concern for reperfusion injury (elevated lactate)
Case Study 4 Outcome

- Patient has resolution of lactate following IV hydration after approximately 24 hours
- Abdominal pain resolved following passing gas.
- Discharged after approximately 24 hours