Skip to Content
Authors Smith BL, Nemcek SP, Swinarski KA, Jiang JJ
Author Profile(s)
Lab(s)
Journal J Voice Volume: 27 Issue: 3 Pages: 261-6
Publish Date 2013 May
PubMed ID 23490131
PMC ID 3644327
Abstract

Traditional excised larynx dissection and setup calls for the removal of all supraglottal structures, eliminating any source-filter interactions that measurably affect the acoustic properties of phonation. We introduce a simplified vocal tract model that can be used in the excised larynx experiments and tested the nonlinear source-filter interactions that are present with the addition of highly coupled, supraglottal structures.Aerodynamic and acoustic data were measured at phonation threshold pressure (PTP) and +25% PTP in 10 excised canine larynges using a modified dissection technique. PTP and phonation threshold flow (PTF) were defined as the pressure and flow at the phonation onset; phonation threshold power (PTW) is the product of these values. Data were recorded for four experimental conditions: PTP without vocal tract; +25% PTP without vocal tract; PTP with vocal tract; and +25% PTP with vocal tract. Differences in PTP, PTF, and PTW were evaluated. For trials conducted at +25% PTP, differences in airflow were evaluated.PTP (P = 0.009) and PTW (P = 0.002) were significantly reduced with the addition of the novel vocal tract. A reduction in PTF was also present with the vocal tract (P = 0.021), but airflow was not significantly reduced in +25% PTP trials (P = 0.196).The proposed vocal tract can be used with complete larynges when conducting excised larynx experiments. The effects of nonlinear source-filter interaction were observed during trials with the vocal tract, as evidenced by changes in threshold aerodynamic parameters.

Full Text Full text available on PubMed Central
webmaster@surgery.wisc.edu Copyright © 2016 The Board of Regents of the University of Wisconsin System