Skip to Content
Authors Pugh CM, Youngblood P
Author Profile(s)
Journal J Am Med Inform Assoc Volume: 9 Issue: 5 Pages: 448-60
Publish Date 2002 Sep-Oct
PubMed ID 12223497
PMC ID 346632
Abstract

Define, extract and evaluate potential performance indicators from computer-generated data collected during simulated clinical female pelvic examinations.Qualitative and quantitative study analyzing computer generated simulator data and written clinical assessments collected from medical students who performed physical examinations on three clinically different pelvic simulators.Introduction to patient care course at a major United States medical school.Seventy-three pre-clinical medical students performed 219 simulated pelvic examinations and generated 219 written clinical assessments.Cronbach’s alpha for the newly defined performance indicators, Pearson’s correlation of performance indicators with scored written clinical assessments of simulator findings.Four novel performance indicators were defined: time to perform a complete examination, number of critical areas touched during the exam, the maximum pressure used, and the frequency at which these areas were touched. The reliability coefficients (alpha) were time = 0.7240, critical areas = 0.6329, maximum pressure = 0.7701, and frequency = 0.5011. Of the four indicators, three correlated positively and significantly with the written clinical assessment scores: critical areas, p < 0.01; frequency, p < 0.05; and maximum pressure, p < 0.05.This study demonstrates a novel method of analyzing raw numerical data generated from a newly developed patient simulator; deriving performance indicators from computer generated simulator data; and assessing validity of those indicators by comparing them with written assessment scores. Results show the new assessment measures provide an objective, reliable, and valid method of assessing students’ physical examination techniques on the pelvic exam simulator.

Full Text Full text available on PubMed Central
webmaster@surgery.wisc.edu Copyright © 2016 The Board of Regents of the University of Wisconsin System