Skip to Content
Authors Thomas-Virnig CL, Centanni JM, Johnston CE, He LK, Schlosser SJ, Van Winkle KF, Chen R, Gibson AL, Szilagyi A, Li L, Shankar R, Allen-Hoffmann BL
Author Profile(s)
Journal Mol. Ther. Volume: 17 Issue: 3 Pages: 562-9
Publish Date 2009 Mar
PubMed ID 19190595
PMC ID 2736055
Abstract

When skin is compromised, a cascade of signals initiates the rapid repair of the epidermis to prevent fluid loss and provide defense against invading microbes. During this response, keratinocytes produce host defense peptides (HDPs) that have antimicrobial activity against a diverse set of pathogens. Using nonviral vectors we have genetically modified the novel, nontumorigenic, pathogen-free human keratinocyte progenitor cell line (NIKS) to express the human cathelicidin HDP in a tissue-specific manner. NIKS skin tissue that expresses elevated levels of cathelicidin possesses key histological features of normal epidermis and displays enhanced antimicrobial activity against bacteria in vitro. Moreover, in an in vivo infected burn wound model, this tissue results in a two log reduction in a clinical isolate of multidrug-resistant Acinetobacter baumannii. Taken together, these results suggest that this genetically engineered human tissue could be applied to burns and ulcers to counteract bacterial contamination and prevent infection.

Full Text Full text available on PubMed Central
webmaster@surgery.wisc.edu Copyright © 2016 The Board of Regents of the University of Wisconsin System