Skip to Content
Authors Kohler JE, Zaborina O, Wu L, Wang Y, Bethel C, Chen Y, Shapiro J, Turner JR, Alverdy JC
Author Profile(s)
Journal Am. J. Physiol. Gastrointest. Liver Physiol. Volume: 288 Issue: 5 Pages: G1048-54
Publish Date 2005 May
PubMed ID 15550562

We have previously shown that a lethal virulence trait in Pseudomonas aeruginosa, the PA-I lectin, is expressed by bacteria within the intestinal lumen of surgically stressed mice. The aim of this study was to determine whether intestinal epithelial hypoxia, a common response to surgical stress, could activate PA-I expression. A fusion construct was generated to express green fluorescent protein downstream of the PA-I gene, serving as a stable reporter strain for PA-I expression in P. aeruginosa. Polarized Caco-2 monolayers were exposed to ambient hypoxia (0.1-0.3% O2) for 1 h, with or without a recovery period of normoxia (21% O2) for 2 h, and then inoculated with P. aeruginosa containing the PA-I reporter construct. Hypoxic Caco-2 monolayers caused a significant increase in PA-I promoter activity relative to normoxic monolayers (165% at 1 h; P < 0.001). Similar activation of PA-I was also induced by cell-free apical, but not basal, media from hypoxic Caco-2 monolayers. PA-I promoter activation was preferentially enhanced in bacterial cells that physically interacted with hypoxic epithelia. We conclude that the virulence circuitry of P. aeruginosa is activated by both soluble and contact-mediated elements of the intestinal epithelium during hypoxia and normoxic recovery. Copyright © 2017 The Board of Regents of the University of Wisconsin System