Skip to Content
Authors Kang Y, Lunin VV, Skarina T, Savchenko A, Schurr MJ, Hoang TT
Author Profile(s)
Journal Mol. Microbiol. Volume: 73 Issue: 1 Pages: 120-36
Publish Date 2009 Jul
PubMed ID 19508282
PMC ID 2759274

The Pseudomonas aeruginosa PsrA autorepressor has dual roles as a repressor of the fadBA5beta-oxidation operon and an activator of the stationary-phase sigma factor rpoS and exsCEBA operon of the type III secretion system (TTSS). Previously, we demonstrated that the repression of the fadBA5 operon by PsrA is relieved by long-chain fatty acids (LCFAs). However, the signal affecting the activation of rpoS and exsC via PsrA is unknown. In this study, microarray and gene fusion data suggested that LCFA (e.g. oleate) affected the expression of rpoS and exsC. DNA binding studies confirmed that PsrA binds to the rpoS and exsC promoter regions. This binding was inhibited by LCFA, indicating that LCFA directly affects the activation of these two genes through PsrA. LCFA decreased rpoS and exsC expression, resulting in increased N-(butyryl)-l-homoserine-lactone quorum sensing signal and decreased ExoS/T production respectively. Based on the crystal structure of PsrA, site-directed mutagenesis of amino acid residues, within the hydrophobic channel thought to accommodate LCFA, created two LCFA-non-responsive PsrA mutants. The binding and activation of rpoS and exsC by these PsrA mutants was no longer inhibited by LCFA. These data support a mechanistic model where LCFAs influence PsrA regulation to control LCFA metabolism and some virulence genes in P. aeruginosa.

Full Text Full text available on PubMed Central Copyright © 2017 The Board of Regents of the University of Wisconsin System