Skip to Content
Authors Pulvermacher AC, Xue C, Leggon R, Mills R, Jiang JJ
Author Profile(s)
Lab(s)
Journal Eur Arch Otorhinolaryngol Volume: 274 Issue: 3 Pages: 1609-1615
Publish Date 2017 Mar
PubMed ID 27826648
Abstract

The main objective of the study is to model asymmetry within anterior glottic webs in excised larynges using sutures and apply aerodynamic and acoustic analyses. Anterior glottic webs (AGW) were modeled in eight excised larynges using sutures secured at the level of the glottis to mimic the scar tissue of the web. Each of the eight larynges were tested under three different pressure increments for each of the three models of AGW: symmetric, vertically asymmetric, and laterally asymmetric. Phonation threshold pressure (PTP) and flow (PTF) differed significantly across AGW conditions (p = 0.006 and p = 0.005, respectively). Additionally, vocal efficiency was significantly different among conditions (p = 0.005) as well as significantly lower in the asymmetric groups (p = 0.015 and p = 0.007). Perturbation measures were not significantly different across conditions. Correlation dimension (D2) was significantly different at PTP, 1.25 × PTP, and 1.5 × PTP (p = 0.003, p = 0.010, and p < 0.001, respectively) as well as significantly higher in the asymmetric groups at each pressure increment. The increased PTP, PTF, and D2 values as well as decreased vocal efficiency among the asymmetric conditions indicates a significant decrease in vocal function, and thus represents that asymmetries could be a contributing factor to the pathological symptoms associated with glottic webs.

webmaster@surgery.wisc.edu Copyright © 2017 The Board of Regents of the University of Wisconsin System