Skip to Content
Authors Gough MJ, Crittenden MR, Sarff M, Pang P, Seung SK, Vetto JT, Hu HM, Redmond WL, Holland J, Weinberg AD
Author Profile(s)
Journal J. Immunother. Volume: 33 Issue: 8 Pages: 798-809
Publish Date 2010 Oct
PubMed ID 20842057
PMC ID 3563298

The tumor recurrence from residual local or micrometastatic disease remains a problem in cancer therapy. In patients with soft tissue sarcoma and the patients with inoperable nonsmall cell lung cancer, local recurrence is common and significant mortality is caused by the subsequent emergence of metastatic disease. Thus, although the aim of the primary therapy is curative, the outcome may be improved by additional targeting of residual microscopic disease. We display in a murine model that surgical removal of a large primary sarcoma results in local recurrence in approximately 50% of animals. Depletion of CD8 T cells results in local recurrence in 100% of animals, indicating that these cells are involved in the control of residual disease. We further show that systemic adjuvant administration of αOX40 at surgery eliminates local recurrences. In this model, αOX40 acts to directly enhance tumor antigen-specific CD8 T-cell proliferation in the lymph node draining the surgical site, and results in increased tumor antigen-specific cytotoxicity in vivo. These results are also corroborated in a murine model of hypofractionated radiation therapy of lung cancer. Administration of αOX40 in combination with radiation significantly extended the survival compared with either agent alone, and resulted in a significant proportion of long-term tumor-free survivors. We conclude that αOX40 increases tumor antigen-specific CD8 T-cell cytotoxic activity resulting in improved endogenous immune control of residual microscopic disease, and we propose that adjuvant αOX40 administration may be a valuable addition to surgical and radiation therapy for cancer.

Full Text Full text available on PubMed Central Copyright © 2017 The Board of Regents of the University of Wisconsin System