Skip to Content
Authors Tao C, Liu X, Jiang JJ
Author Profile(s)
Journal Phys Rev E Stat Nonlin Soft Matter Phys Volume: 84 Issue: 2 Pt 2 Pages: 026205
Publish Date 2011 Aug
PubMed ID 21929079

A term-ranking approach is proposed to globally model the underlying dynamics of a chaotic series. The basic idea of this approach is to rank candidate bases before they are used to construct the global model. The ranked bases are involved in the global model one by one in a sequence from high to low until the best model is found. Simulations show that the model obtained by the term-ranking approach has a much longer prediction time, but fewer coefficients, than the widely used standard model. The proposed approach is also successfully applied to coding and synthesis of chaoslike voice data, showing promise for its use with truly noisy experimental data. Copyright © 2017 The Board of Regents of the University of Wisconsin System