Skip to Content
Authors Bulcao CF, D'Souza KM, Malhotra R, Staron M, Duffy JY, Pandalai PK, Jeevanandam V, Akhter SA
Author Profile(s)
Journal J. Heart Lung Transplant. Volume: 29 Issue: 3 Pages: 346-51
Publish Date 2010 Mar
PubMed ID 20022263
PMC ID 2833227

Donor heart dysfunction (DHD) precluding procurement for transplantation occurs in up to 25% of brain-dead (BD) donors. The molecular mechanisms of DHD remain unclear. We investigated the potential role of myocardial interleukin (IL)-6 signaling through the JAK2-STAT3 pathway, which can lead to the generation of nitric oxide (NO) and decreased cardiac myocyte contractility.Hearts were procured using standard technique with University of Wisconsin (UW) solution from 14 donors with a left ventricular (LV) ejection fraction of <35% (DHD). Ten hearts with normal function (NF) after BD served as controls. LV IL-6 was quantitated by enzyme-linked immunoassay (ELISA) and JAK2-STAT3 signaling was assessed by expression of phosphorylated STAT3. Inducible NO synthase (iNOS) and caspase-3 were measured by activity assays.Myocardial IL-6 expression was 8-fold greater in the DHD group vs NF controls. Phosphorylated STAT3 expression was 5-fold higher in DHD than in NF, indicating increased JAK2-STAT3 signaling. LV activity of iNOS was 2.5-fold greater in DHD than in NF. LV expression of the pro-apoptotic gene Bnip3 and caspase-3 activity were 3-fold greater in the DHD group than in the NF group.Myocardial IL-6 expression is significantly higher in the setting of DHD compared with hearts procured with normal function. This may lead to increased JAK2-STAT3 signaling and upregulation of iNOS, which has been shown to decrease cardiac myocyte contractility. Increased NO production may also lead to increased apoptosis through upregulation of Bnip3 gene expression. Increased iNOS signaling may be an important mechanism of DHD and represents a novel therapeutic target to improve cardiac function after BD.

Full Text Full text available on PubMed Central Copyright © 2017 The Board of Regents of the University of Wisconsin System