Skip to Content
Authors Butte CJ, Zhang Y, Song H, Jiang JJ
Author Profile(s)
Journal J Voice Volume: 23 Issue: 6 Pages: 647-52
Publish Date 2009 Nov
PubMed ID 18504114
PMC ID 3313593

Previous research has used perturbation analysis methods to study the singing voice. Using perturbation and nonlinear dynamic analysis (NDA) methods in conjunction may provide more accurate information on the singing voice and may distinguish vocal usage in different styles. Acoustic samples from different styles of singing were compared using nonlinear dynamic and perturbation measures. Twenty-six songs from different musical styles were obtained from an online music database (Rhapsody, RealNetworks, Inc., Seattle, WA). One-second samples were selected from each song for analysis. Perturbation analyses of jitter, shimmer, and signal-to-noise ratio and NDA of correlation dimension (D(2)) were performed on samples from each singing style. Percent jitter and shimmer median values were low normal for country (0.32% and 3.82%), musical theater (MT) (0.280% and 2.80%), jazz (0.440% and 2.34%), and soul (0.430% and 6.42%). The popular style had slightly higher median jitter and shimmer values (1.13% and 6.78%) than other singing styles, although this was not statistically significant. The opera singing style had median jitter of 0.520%, and yielded significantly high shimmer (P=0.001) of 7.72%. All six singing styles were measured reliably using NDA, indicating that operatic singing is notably more chaotic than other singing styles. Median correlation dimension values were low to normal, compared to healthy voices, in country (median D(2)=2.14), jazz (median D(2)=2.24), pop (median D(2)=2.60), MT (median D(2)=2.73), and soul (mean D(2)=3.26). Correlation dimension was significantly higher in opera (P<0.001) with median D(2)=6.19. In this study, acoustic analysis in opera singing gave significantly high values for shimmer and D(2), suggesting that it is more irregular than other singing styles; a previously unknown quality of opera singing. Perturbation analysis also suggested significant differences in vocal output in different singing styles. This preliminary study using acoustic analysis with nonlinear dynamic measures and perturbation measures may represent a valuable procedure in quantitatively describing the properties of the singing voice. Further research with human test subjects may allow us to characterize singing styles and diagnose vocal dysfunction in the singing voice.

Full Text Full text available on PubMed Central Copyright © 2017 The Board of Regents of the University of Wisconsin System