Skip to Content
Authors Platta CS, Greenblatt DY, Kunnimalaiyaan M, Chen H
Author Profile(s)
Journal J. Surg. Res. Volume: 148 Issue: 1 Pages: 31-7
Publish Date 2008 Jul
PubMed ID 18570928
PMC ID 2900385
Abstract

Small cell lung cancer (SCLC) is an aggressive malignancy. Current treatments yield dismal survival rates. We have previously demonstrated that histone deacetylase (HDAC) inhibitors can inhibit neuroendocrine tumor growth. Activation of the Notch1 signaling pathway also impairs SCLC cell viability. In this study, we investigated the ability of the HDAC inhibitor valproic acid (VPA) to activate Notch1 signaling and inhibit proliferation in SCLC cells.DMS53 human SCLC cells were treated with VPA (0-10 mM) for 2 d. Light microscopy was used to examine changes in cell morphology. Western analysis was performed using antibodies against various Notch1 pathway proteins to assess Notch1 activation. Additionally, immunoblotting was performed for two neuroendocrine tumor markers, chromogranin A and achaete-scute complex-like 1. Finally, a cell proliferation assay was used to measure the effects of VPA on SCLC growth over 8 d.After treatment with VPA, DMS53 cells underwent dramatic changes in morphology. VPA induced expression of the full-length and active forms of Notch1 protein. Furthermore, VPA suppressed levels of neuroendocrine tumor markers chromogranin A and ASLC-1. Importantly, VPA treatment led to dose-dependent inhibition of SCLC cell proliferation.The HDAC inhibitor VPA activates Notch1 signaling in SCLC cells. VPA induces changes in cell morphology and suppresses neuroendocrine tumor markers, indicating a change in phenotype. Additionally, VPA profoundly inhibits SCLC cell growth. These results suggest that VPA has potential as a novel therapeutic agent for SCLC.

Full Text Full text available on PubMed Central
webmaster@surgery.wisc.edu Copyright © 2016 The Board of Regents of the University of Wisconsin System